You are here

Reducing new mining for electric vehicle battery metals: responsible sourcing through demand reduction strategies and recycling

By Elsa Dominish, Nick Florin, and Rachael Wakefield-Rann - Earthworks, April 27, 2021

This research investigates the current status and future potential of strategies to reduce demand for new mining, particularly for lithium-ion battery metals for electric vehicles. This study is focused on four metals which are important to lithium-ion batteries: cobalt, lithium, nickel and copper.

In order to meet the goals of the Paris Climate agreement and prevent the worst effects of catastrophic climate change, it will be essential for economies to swiftly transition to renewable energy and transport systems. At present, the technologies required to produce, store and utilize renewable energy require a significant amount of materials that are found predominantly in environmentally sensitive and often economically marginalized regions of the world. As demand for these materials increase, the pressures on these regions are likely to be amplified. For renewable energy to be socially and ecologically sustainable, industry and government should develop and support responsible management strategies that reduce the adverse impacts along the material and technology supply chains.

There are a range of strategies to minimize the need for new mining for lithium-ion batteries for electric vehicles, including extending product life through improved design and refurbishment for reuse, and recovering metals through recycling at end of life. For example, we found that recycling has the potential to reduce primary demand compared to total demand in 2040, by approximately 25% for lithium, 35% for cobalt and nickel and 55% for copper, based on projected demand. This creates an opportunity to significantly reduce the demand for new mining. However, in the context of growing demand for electric vehicles, it will also be important that other demand reduction strategies with lower overall material and energy costs are pursued in tandem with recycling, including policy to dis-incentivize private car ownership and make forms of active and public transport more accessible. While the potential for these strategies to reduce demand is currently not well understood; this report provides insights into the relative merits, viability, and implications of these demand reduction strategies, and offers recommendations for key areas of policy action.

Read the text (Link).

The Fine Print I:

Disclaimer: The views expressed on this site are not the official position of the IWW (or even the IWW’s EUC) unless otherwise indicated and do not necessarily represent the views of anyone but the author’s, nor should it be assumed that any of these authors automatically support the IWW or endorse any of its positions.

Further: the inclusion of a link on our site (other than the link to the main IWW site) does not imply endorsement by or an alliance with the IWW. These sites have been chosen by our members due to their perceived relevance to the IWW EUC and are included here for informational purposes only. If you have any suggestions or comments on any of the links included (or not included) above, please contact us.

The Fine Print II:

Fair Use Notice: The material on this site is provided for educational and informational purposes. It may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. It is being made available in an effort to advance the understanding of scientific, environmental, economic, social justice and human rights issues etc.

It is believed that this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have an interest in using the included information for research and educational purposes. If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. The information on this site does not constitute legal or technical advice.