You are here

batteries

Lithium, Batteries and Climate Change: The transition to green energy does not have to be powered by destructive and poisonous mineral extraction

By Jonathan Neale - Climate and Capitalism, February 11, 2021

I have spent the last year working on a book called Fight the Fire: Green New Deals and Global Climate Jobs. Most of it is about both the politics and the engineering of any possible transition that can avert catastrophic climate breakdown. One thing I had to think about long and hard was lithium and car batteries.

I often hear people say that we can’t cover the world with electric vehicles, because there simply is not enough lithium for batteries. In any case, they add, lithium production is toxic, and the only supplies are in the Global South. Moreover, so the story goes, there are not enough rare earth metals for wind turbines and all the other hardware we will need for renewable energy.

People often smile after they say those things, which is hard for me to understand, because it means eight billion people will go to hell.

So I went and found out about lithium batteries and the uses of rare earth. What I found out is that the transition will be possible, but neither the politics nor the engineering is simple. This article explains why. I start by describing the situation simply, and then add in some of the complexity.

Lithium is a metal used in almost all electric vehicle batteries today. About half of global production of lithium currently goes to electric vehicles. And in future we will need to increase the production of electric vehicles from hundreds or thousands to hundreds of millions. That will require vast amounts of lithium.

There are three ways to mine lithium. It can be extracted from rock. It can be extracted from the brine that is left over when sea water passes through a desalination plant. Or it can be extracted from those brine deposits which are particularly rich in lithium. These brine deposits are the common way of mining lithium currently, because it is by far the cheapest. Most of the known deposits of lithium rich brine are in the arid highlands where Bolivia, Chile and Argentina come together.

Lithium mining is well established in Chile and Argentina. In both countries the local indigenous people have organized against the mining, but so far been unable to stop it. The mining is toxic, because large amounts of acid are used in the processing. But the mining also uses large amounts of water in places that already has little enough moisture. The result is that ancestral homelands become unlivable.

Bolivia may have even richer deposits of lithium than Argentina and Chile, but mining has not begun there. The Bolivian government had been led by the indigenous socialist Evo Morales from 2006 to 2019. Morales had been propelled to power by a mass movement committed to taking back control of Bolivia’s water, gas and oil resources from multinational corporations. Morales was unable to nationalize the corporations, but he did insist on the government getting a much larger share of the oil and gas revenue.[1]

His government planned to go even further with lithium. Morales wanted to mine the lithium in Bolivia, but he wanted to build factories alongside the mines to make batteries. In a world increasingly hungry for batteries, that could have turned Bolivia into an industrial nation, not just a place to exploit resources.

The Morales government, however, was unable to raise the necessary investment funds. Global capital, Tesla, the big banks and the World Bank had no intention of supporting such a project. And if they had, they would not have done so in conjunction with a socialist like Morales. Then, in 2019, a coup led by Bolivian capitalists, and supported by the United States, removed Morales. Widespread popular unrest forced a new election in October. Morales’ party, the Movement for Socialism won, though Morales himself was out of the running. It is unclear what will happen to the lithium.

That’s one level of complexity. The local indigenous people did not want the lithium mined. The socialist government did not want extractavism, but they did want industrial development.

Those are not the only choices.

For one thing, there are other, more expensive ways of mining lithium. It can be mined from hard rock in China or the United States. More important, batteries do not have to be made out of lithium. Cars had used batteries for almost a century before Sony developed a commercial lithium-ion battery in 1991. Engineers in many universities are experimenting with a range of other materials for building batteries. But even without looking to the future, it would be possible to build batteries in the ways they used to be built. Indeed, in January 2020, the US Geological Service listed the metals that could be substituted for lithium in battery anodes as calcium, magnesium, mercury and zinc.[2]

The reason all manufacturers currently use lithium is that it provides a lighter battery that lasts longer. That gives the car greater range without recharging, and it make possible a much lighter car. In other words, lithium batteries are cheaper.

IndustriALL sets out union goals for decent work in the battery supply chain, organizing in Green Tech

By Elizabeth Perry - Work and Climate Change Report, November 20, 2020

IndustriALL Global Union represents workers along the entire battery supply chain, (except in China) through its international affiliates in mining, chemicals, energy, electronics, and the automotive sector. Canada’s Unifor is an affiliate. “Due diligence across the battery supply chain” (November 2020) describes that expanding and complex supply chain, from mining to processing to end-use products for batteries, and outlines the union’s aim to research and map it. IndustriALL’s aim is to “create a social dialogue scheme or platform with key stakeholders to achieve decent work for all throughout the supply chain. IndustriALL is the only global union who can coordinate unions around the world and contribute to the policy to achieve decent work around the battery supply chain. The international trade union movement becomes more important than ever. ” A separate post, “Developing a global trade union battery supply chain strategy” ( November 20) outlines further specifics about the union’s strategy and announces: “IndustriALL has applied for funding for a project starting in January 2021 on the battery supply chain across the industrial sectors. In a pilot project IndustriALL intends to collaborate with companies, NGOs and other associations to find out how such an approach can help to genuinely improve the situation workers along the entire battery supply chain.”

GreenTEch Manifesto for Mechanical Engineering

IndustriALL Global Union convened an online seminar on green technology in the mechanical engineering sector in early November 2020 – summarized here. The seminar was the occasion to launch a GreenTech Manifesto, which defines “Green technology” (GreenTech ) as “ any technology that promotes one or more of the 17 Sustainable Development Goals adopted by the UN summit in 2015, specifically clean water and sanitation, affordable and clean energy, green industry, innovation and infrastructure, responsible consumption and production and climate action.”

At a previous IndustriALL workshop on Mechanical Engineering and GreenTech in December 2018, the President of Austrian trade union PRO-GE and co-chair of the sector, said: “As mechanical engineers and trade unionists, technology is the most important contribution we can make to mitigating climate change. We need hydro, we need wind, we need solar, we need biomass. And we need strong unions to ensure that energy transition is just.”

The new Greentech Manifesto states: “IndustriALL Global Union and its affiliates need to be alert and present so that green jobs become good jobs with appropriate working and living conditions. To this end the participants at this IndustriALL Global Union GreenTech virtual workshop resolve to: § facilitate exchange between affected affiliates in the sector over new trends, especially focusing on GreenTech, digitization and related developments § organize training for trade union organizers and works councils to develop new methods, strategies and services to approach and recruit new employees at green workplaces § involve especially young workers and women in our work § intensify our efforts to increase trade union power in the affected sectors through organizing and recruiting.”

A Vision for a Sustainable Battery Value Chain in 2030: Unlocking the Full Potential to Power Sustainable Development and Climate Change Mitigation

By staff - World Economic Forum, 2019

The need for urgent and more intensive actions against climate change is broadly recognized. In support of this agenda, this report presents a simple yet profound vision: a circular, responsible and just battery value chain is one of the major near- term drivers to realize the 2°C Paris Agreement goal in the transport and power sectors, setting course towards achieving the 1.5°C goal if complemented with other technologies and collaborative efforts.

With the right conditions in place, batteries are a systemic enabler of a major shift to bring transportation and power to greenhouse gas neutrality by coupling both sectors for the first time in history and transforming renewable energy from an alternative source to a reliable base. According to this report, batteries could enable 30% of the required reductions in carbon emissions in the transport and power sectors, provide access to electricity to 600 million people who currently have no access, and create 10 million safe and sustainable jobs around the world.

This report provides a quantified foundation for a vision about how batteries can contribute to sustainable development and climate change mitigation over the coming decade. The analysis underscores that this opportunity can only be achieved sustainably through a systemic approach across social, environmental and economic dimensions. It outlines key conditions and presents recommendations to realize this potential.

Read the report (Link).

Green Conflict Minerals: The fuels of conflict in the transition to a low-carbon economy

By Clare Church and Alec Crawford - International Institute for Sustainable Development, August 2018

The mining sector will play a key role in the transition toward a low-carbon future.

The technologies required to facilitate this shift, including wind turbines, solar panels and improved energy storage, all require significant mineral and metal inputs and, absent any dramatic technological advances or an increase in the use of recycled materials, these inputs will come from the mining sector. How they are sourced will determine whether this transition supports peaceful, sustainable development in the countries where strategic reserves are found or reinforces weak governance and exacerbates local tensions and grievances.

Through extensive desk-based research, a mapping analysis, stakeholder consultations, case studies and an examination of existing mineral supply chain governance mechanisms, this report seeks to understand how the transition to a low-carbon economy—and the minerals and metals required to make that shift—could affect fragility, conflict and violence dynamics in mineral-rich states.

For the minerals required to make the transition to a low-carbon economy, there are real risks of grievances, tensions and conflicts emerging or continuing around their extraction. In order to meet global goals around sustainable development and climate change mitigation, while contributing to lasting peace, the supply chains of these strategic minerals must be governed in a way that is responsible, accountable and transparent.

Read the report (Link).

A closer look at electric vehicle growth: impact on pollution, and labour conditions in the mines supplying raw materials

By Elizabeth Perry - Work and Climate Change Report, August 23, 2017

The summer started with several “good news” stories about the surge of electric vehicles, such as “Starting in 2019, Volvo will use electricity to power every new model” from the Washington Post (July 5) , quoting Volvo’s CEO :  “This announcement marks the end of the solely combustion engine-powered car.”  Bloomberg Business Week, summarizing the findings of its latest New Energy forecast,  stated on July 7, “in just eight years, electric cars will be as cheap as gasoline vehicles, pushing the global fleet to 530 million vehicles by 2040″, and “Electric cars will outsell fossil-fuel powered vehicles within two decades as battery prices plunge, turning the global auto industry upside down and signaling economic turmoil for oil-exporting countries” .  On July 6,  France announced   it would end the sale of gas and diesel cars by 2040 ,  and on July 26 the U.K. released its Clean Air Plan, which included  a ban on the sale of new diesel and gas cars after 2040, with only electric vehicles available after that.

Response to the U.K. announcement is mixed.  In “Electric cars are not the solution to air pollution” Professor Frank Kelly, a professor of environmental health at King’s College London and chair of the government’s  Committee on the Medical Effects of Air Pollutants states that “The government’s plan does not go nearly far enough,” “Our cities need fewer cars, not just cleaner cars.”  In his role as a member of  the Centre for London’s commission on the future of the capital’s roads and streets  ,    Professor Kelly provides more detail about the problem of particle pollution and states:  “London should lead in showing electric cars will not tackle air pollution”  in The Guardian (August 4).  His conclusion: “The safe and efficient movement of people around the city can only be achieved through a clean and expanded mass transit system served by buses, overground trains and the underground system – and as much active transport in the form of walking and cycling as is feasibly possible.”

Others are raising issues about electric vehicles on other grounds, specifically the environmental costs  and labour conditions of producing the lithium ion batteries that power them.  These are not new concerns:  Carla Lipsig Mumme and Caleb Goods raised the flag in June 2015 with “The battery revolution is exciting, but remember they pollute too”   in The Conversation.   In January 2016, Amnesty International published a detailed documentation of the hazardous working conditions and the use of child labour in cobalt mining in the Democratic Republic of the Congo in  This is what we die for: Human rights abuses in the Democratic Republic of the Congo power the global trade in cobalt  . (Cobalt is also used in mobile phones, laptop computers, and other portable electronic devices). The report  is available in English, French and Chinese from this link .

The Fine Print I:

Disclaimer: The views expressed on this site are not the official position of the IWW (or even the IWW’s EUC) unless otherwise indicated and do not necessarily represent the views of anyone but the author’s, nor should it be assumed that any of these authors automatically support the IWW or endorse any of its positions.

Further: the inclusion of a link on our site (other than the link to the main IWW site) does not imply endorsement by or an alliance with the IWW. These sites have been chosen by our members due to their perceived relevance to the IWW EUC and are included here for informational purposes only. If you have any suggestions or comments on any of the links included (or not included) above, please contact us.

The Fine Print II:

Fair Use Notice: The material on this site is provided for educational and informational purposes. It may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. It is being made available in an effort to advance the understanding of scientific, environmental, economic, social justice and human rights issues etc.

It is believed that this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have an interest in using the included information for research and educational purposes. If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. The information on this site does not constitute legal or technical advice.