You are here

batteries

How “clean” are clean energy and electric vehicles?

By Elizabeth Perry - Work and Climate Change Report, January 19, 2021

Several articles and reports published recently have re-visited the question: how “clean” is “clean energy”? Here is a selection, beginning in October 2020 with a multi-part series titled Recycling Clean Energy Technologies , from the Union of Concerned Scientists. It includes: “Wind Turbine blades don’t have to end up in landfill”; “Cracking the code on recycling energy storage batteries“; and “Solar Panel Recycling: Let’s Make It Happen” .

The glaring problem with Canada’s solar sector and how to fix it” (National Observer, Nov. 2020) states that “While solar is heralded as a clean, green source of renewable energy, this is only true if the panels are manufactured sustainably and can be recycled and kept out of landfills.” Yet right now, Canada has no capacity to recycle the 350 tonnes of solar pv waste produced in 2016 alone, let alone the 650,000 tonnes Canada is expected to produce by 2050. The author points the finger of responsibility at Canadian provinces and territories, which are responsible for waste management and extended producer responsibility (EPR) regulations. A description of solar recycling and waste management systems in Europe and the U.S. points to better practices.

No ‘green halo’ for renewables: First Solar, Veolia, others tackle wind and solar environmental impacts” appeared in Utility Drive (Dec. 14) as a “long read” discussion of progress to uphold environmental and health and safety standards in both the production and disposal of solar panels and wind turbine blades. The article points to examples of industry standards and third-party certification of consumer goods, such as The Green Electronics Council (GEC) and NSF International. The article also quotes experts such as University of California professor Dustin Mulvaney, author of Solar Power: Innovation, Sustainability, and Environmental Justice (2019) and numerous other articles which have tracked the environmental impact, and labour standards, of the solar energy industry.

Regarding the recycling of wind turbine blades: A press release on December 8 2020 describes a new agreement between GE Renewable Energy and Veolia, whereby Veolia will recycle blades removed from its U.S.-based onshore wind turbines by shredding them at a processing facility in Missouri, so that they can be used as a replacement for coal, sand and clay in cement manufacturing. A broader article appeared in Grist, “Today’s wind turbine blades could become tomorrow’s bridges” (Jan. 8 2021) which notes the GE- Veoli initiative and describes other emerging and creative ways to deal with blade waste, such as the Re-Wind project. Re-Wind is a partnership involving universities in the U.S., Ireland, and Northern Ireland who are engineering ways to repurpose the blades for electrical transmission towers, bridges, and more. The article also quotes a senior wind technology engineer at the National Renewable Energy Laboratory in the U.S. who is experimenting with production materials to find more recyclable materials from which to build wind turbine blades in the first place. He states: “Today, recyclability is something that is near the top of the list of concerns” for wind energy companies and blade manufacturers alike …. All of these companies are saying, ‘We need to change what we’re doing, number one because it’s the right thing to do, number two because regulations might be coming down the road. Number three, because we’re a green industry and we want to remain a green industry.’”

These are concerns also top of mind regarding the electric vehicle industry, where both production and recycling of batteries can be detrimental to the planet. The Battery Paradox: How the electric vehicle boom is draining communities and the planet is a December 2020 report by the Dutch Centre for Research on Multinational Corporations (SOMO). It reviews the social and environmental impacts of the whole battery value chain, (mining, production, and recycling) and the mining of key minerals used in Lithium-ion batteries (lithium, cobalt, nickel, graphite and manganese). The report concludes that standardization of battery cells, modules and packs would increase recycling rates and efficiency, but ultimately, “To relieve the pressure on the planet, …. any energy transition strategy should prioritize reducing demand for batteries and cars… Strategies proposed include ride-sharing, car-sharing and smaller vehicles.”

IndustriALL sets out union goals for decent work in the battery supply chain, organizing in Green Tech

By Elizabeth Perry - Work and Climate Change Report, November 20, 2020

IndustriALL Global Union represents workers along the entire battery supply chain, (except in China) through its international affiliates in mining, chemicals, energy, electronics, and the automotive sector. Canada’s Unifor is an affiliate. “Due diligence across the battery supply chain” (November 2020) describes that expanding and complex supply chain, from mining to processing to end-use products for batteries, and outlines the union’s aim to research and map it. IndustriALL’s aim is to “create a social dialogue scheme or platform with key stakeholders to achieve decent work for all throughout the supply chain. IndustriALL is the only global union who can coordinate unions around the world and contribute to the policy to achieve decent work around the battery supply chain. The international trade union movement becomes more important than ever. ” A separate post, “Developing a global trade union battery supply chain strategy” ( November 20) outlines further specifics about the union’s strategy and announces: “IndustriALL has applied for funding for a project starting in January 2021 on the battery supply chain across the industrial sectors. In a pilot project IndustriALL intends to collaborate with companies, NGOs and other associations to find out how such an approach can help to genuinely improve the situation workers along the entire battery supply chain.”

GreenTEch Manifesto for Mechanical Engineering

IndustriALL Global Union convened an online seminar on green technology in the mechanical engineering sector in early November 2020 – summarized here. The seminar was the occasion to launch a GreenTech Manifesto, which defines “Green technology” (GreenTech ) as “ any technology that promotes one or more of the 17 Sustainable Development Goals adopted by the UN summit in 2015, specifically clean water and sanitation, affordable and clean energy, green industry, innovation and infrastructure, responsible consumption and production and climate action.”

At a previous IndustriALL workshop on Mechanical Engineering and GreenTech in December 2018, the President of Austrian trade union PRO-GE and co-chair of the sector, said: “As mechanical engineers and trade unionists, technology is the most important contribution we can make to mitigating climate change. We need hydro, we need wind, we need solar, we need biomass. And we need strong unions to ensure that energy transition is just.”

The new Greentech Manifesto states: “IndustriALL Global Union and its affiliates need to be alert and present so that green jobs become good jobs with appropriate working and living conditions. To this end the participants at this IndustriALL Global Union GreenTech virtual workshop resolve to: § facilitate exchange between affected affiliates in the sector over new trends, especially focusing on GreenTech, digitization and related developments § organize training for trade union organizers and works councils to develop new methods, strategies and services to approach and recruit new employees at green workplaces § involve especially young workers and women in our work § intensify our efforts to increase trade union power in the affected sectors through organizing and recruiting.”

Cracking the Code on Recycling Energy Storage Batteries

By James Gignac - Union of Concerned Scientists, October 30, 2020

This is one of four blogs in a series examining current challenges and opportunities for recycling of clean energy technologies. Please see the introductory post, as well as other entries on solar panels and wind turbines. Special thanks to Jessica Garcia, UCS’s Summer 2020 Midwest Clean Energy Policy Fellow, for research support and co-authoring these posts.

Lithium-ion batteries dominate the energy storage scene

Lithium-ion (Li-ion) batteries might be known to everyday consumers as the rechargeable batteries which power our cellphones, cameras, and even toothbrushes. Apart from storing energy for small devices, Li-ion batteries are now being used at a much larger scale to store energy for electric vehicles (EVs) and as storage for renewable energy systems like wind and especially solar.

Bloomberg New Energy Finance reports that prices for battery packs used in electric vehicles and energy storage systems have fallen 87% from 2010-2019, much faster than expected. As the prices have fallen, battery usage has risen.

So have the conversations on what can and should be done with Li-ion batteries when they reach the end-of-use stage. Here we will focus on recycling of lithium-ion batteries from energy storage systems, but for more information on increasing possibilities for second-life uses of EV batteries, see our former colleague Hanjiro Ambrose’s blog and podcast episode.

As a key energy storage technology, batteries are important for incorporating higher amounts of wind and solar power on the grid.

A Vision for a Sustainable Battery Value Chain in 2030: Unlocking the Full Potential to Power Sustainable Development and Climate Change Mitigation

By staff - World Economic Forum, 2019

The need for urgent and more intensive actions against climate change is broadly recognized. In support of this agenda, this report presents a simple yet profound vision: a circular, responsible and just battery value chain is one of the major near- term drivers to realize the 2°C Paris Agreement goal in the transport and power sectors, setting course towards achieving the 1.5°C goal if complemented with other technologies and collaborative efforts.

With the right conditions in place, batteries are a systemic enabler of a major shift to bring transportation and power to greenhouse gas neutrality by coupling both sectors for the first time in history and transforming renewable energy from an alternative source to a reliable base. According to this report, batteries could enable 30% of the required reductions in carbon emissions in the transport and power sectors, provide access to electricity to 600 million people who currently have no access, and create 10 million safe and sustainable jobs around the world.

This report provides a quantified foundation for a vision about how batteries can contribute to sustainable development and climate change mitigation over the coming decade. The analysis underscores that this opportunity can only be achieved sustainably through a systemic approach across social, environmental and economic dimensions. It outlines key conditions and presents recommendations to realize this potential.

Read the report (Link).

Green Conflict Minerals: The fuels of conflict in the transition to a low-carbon economy

By Clare Church and Alec Crawford - International Institute for Sustainable Development, August 2018

The mining sector will play a key role in the transition toward a low-carbon future.

The technologies required to facilitate this shift, including wind turbines, solar panels and improved energy storage, all require significant mineral and metal inputs and, absent any dramatic technological advances or an increase in the use of recycled materials, these inputs will come from the mining sector. How they are sourced will determine whether this transition supports peaceful, sustainable development in the countries where strategic reserves are found or reinforces weak governance and exacerbates local tensions and grievances.

Through extensive desk-based research, a mapping analysis, stakeholder consultations, case studies and an examination of existing mineral supply chain governance mechanisms, this report seeks to understand how the transition to a low-carbon economy—and the minerals and metals required to make that shift—could affect fragility, conflict and violence dynamics in mineral-rich states.

For the minerals required to make the transition to a low-carbon economy, there are real risks of grievances, tensions and conflicts emerging or continuing around their extraction. In order to meet global goals around sustainable development and climate change mitigation, while contributing to lasting peace, the supply chains of these strategic minerals must be governed in a way that is responsible, accountable and transparent.

Read the report (Link).

A closer look at electric vehicle growth: impact on pollution, and labour conditions in the mines supplying raw materials

By Elizabeth Perry - Work and Climate Change Report, August 23, 2017

The summer started with several “good news” stories about the surge of electric vehicles, such as “Starting in 2019, Volvo will use electricity to power every new model” from the Washington Post (July 5) , quoting Volvo’s CEO :  “This announcement marks the end of the solely combustion engine-powered car.”  Bloomberg Business Week, summarizing the findings of its latest New Energy forecast,  stated on July 7, “in just eight years, electric cars will be as cheap as gasoline vehicles, pushing the global fleet to 530 million vehicles by 2040″, and “Electric cars will outsell fossil-fuel powered vehicles within two decades as battery prices plunge, turning the global auto industry upside down and signaling economic turmoil for oil-exporting countries” .  On July 6,  France announced   it would end the sale of gas and diesel cars by 2040 ,  and on July 26 the U.K. released its Clean Air Plan, which included  a ban on the sale of new diesel and gas cars after 2040, with only electric vehicles available after that.

Response to the U.K. announcement is mixed.  In “Electric cars are not the solution to air pollution” Professor Frank Kelly, a professor of environmental health at King’s College London and chair of the government’s  Committee on the Medical Effects of Air Pollutants states that “The government’s plan does not go nearly far enough,” “Our cities need fewer cars, not just cleaner cars.”  In his role as a member of  the Centre for London’s commission on the future of the capital’s roads and streets  ,    Professor Kelly provides more detail about the problem of particle pollution and states:  “London should lead in showing electric cars will not tackle air pollution”  in The Guardian (August 4).  His conclusion: “The safe and efficient movement of people around the city can only be achieved through a clean and expanded mass transit system served by buses, overground trains and the underground system – and as much active transport in the form of walking and cycling as is feasibly possible.”

Others are raising issues about electric vehicles on other grounds, specifically the environmental costs  and labour conditions of producing the lithium ion batteries that power them.  These are not new concerns:  Carla Lipsig Mumme and Caleb Goods raised the flag in June 2015 with “The battery revolution is exciting, but remember they pollute too”   in The Conversation.   In January 2016, Amnesty International published a detailed documentation of the hazardous working conditions and the use of child labour in cobalt mining in the Democratic Republic of the Congo in  This is what we die for: Human rights abuses in the Democratic Republic of the Congo power the global trade in cobalt  . (Cobalt is also used in mobile phones, laptop computers, and other portable electronic devices). The report  is available in English, French and Chinese from this link .

Will EVs Create Budget Potholes for States?: Economic Development Megadeals for Electric Vehicle and Battery Factories

By Greg LeRoy, with Kasia Tarczynska and Maja Ochojska - Good Jobs First, October 2022

In a megadeal spending spree like no other in U.S. history, states and localities have awarded more than $13.8 billion in economic development subsidies to at least 51 electric vehicle (EV) and EV battery factories. Many more dollars have certainly been committed to 53 more projects where incentives are not yet disclosed. Most of these deals have been approved since 2018, and many in just 2021 and 2022.

EVs are a necessary and vital climate-change solution, but these lavish new subsidies effectively amount to states taking credit for good news that is already unfolding. Decades of federal and state pro-EV investments and policies are paying off and the market is rapidly moving. Big factory-specific subsidies are wasting public dollars at a moment when states are flush with pandemic relief grants that should be used broadly, to make economies more resilient against future stressors.

Download a copy of this publication here (link).

Pages

The Fine Print I:

Disclaimer: The views expressed on this site are not the official position of the IWW (or even the IWW’s EUC) unless otherwise indicated and do not necessarily represent the views of anyone but the author’s, nor should it be assumed that any of these authors automatically support the IWW or endorse any of its positions.

Further: the inclusion of a link on our site (other than the link to the main IWW site) does not imply endorsement by or an alliance with the IWW. These sites have been chosen by our members due to their perceived relevance to the IWW EUC and are included here for informational purposes only. If you have any suggestions or comments on any of the links included (or not included) above, please contact us.

The Fine Print II:

Fair Use Notice: The material on this site is provided for educational and informational purposes. It may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. It is being made available in an effort to advance the understanding of scientific, environmental, economic, social justice and human rights issues etc.

It is believed that this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have an interest in using the included information for research and educational purposes. If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. The information on this site does not constitute legal or technical advice.