You are here

cobalt

Industrial Consumption: A largely invisible yet decisive underlying cause of the crisis

By Justiça Ambiental! and WoMIN - World Rainforest Movement, July 9, 2021

Industrial consumption is an intrinsic aspect of capitalist’s logic of increasing accumulation. It is also an underlying cause of the current crisis, which is being reinforced by initiatives promoting a ‘green’ label for the same production chains. This article highlights the voices of Justiça Ambiental! in Mozambique and the African ecofeminist alliance WoMIN.

This article highlights the voices of two organizations: Justiça Ambiental! (JA!) in Mozambique, which is accompanying the struggles in Cabo Delgado against the extraction of offshore and inland gas deposits; and WoMIN, an African ecofeminist alliance that works with movements of women and communities impacted by mining activities.

The world is in the midst of a serious and manifold crisis, one that brings together concerns over environmental devastation, climate chaos, loss of biological diversity, large-scale deforestation, social inequality, food insecurity, increasing poverty levels, and the concentration of power and land into fewer hands. And the list could go on and on. Industrial consumption is a vital aspect of what is driving this crisis, that is, an underlying cause. These are causes that operate on a global scale and consist of economic, political and social components that influence each other.

It is important to remark that the term industrial consumption should be understood not as the individual act of consuming, but rather as a consequence of the systemic logic of the capitalist economy of ever increasing accumulation. That means that each company, in order to make more profits, needs to grow and, in many cases, produce more and promote bigger and new markets for expansion; but to produce more, a company also needs to consume more resources (particularly energy, land and water).

Massive amounts of energy, from different sources, are distributed to industries to feed their production chains. Thousands of hectares of fertile land are turned into cash crops for industrial purposes. Mines and industrial plantations around the world siphon off and pollute enormous amounts of already scarce water sources. (1) Land is increasingly under the control of fewer individuals. Each day, enormous quantities of herbicides, insecticides, fungicides and fertilizers are produced and used by tree plantation companies and other agribusiness sectors. Minerals and fossil fuels continue to be extracted and transported across the globe via long and frequently militarized corridors of pipelines, waterways and roads. Ports, airports, highways and storage units are constantly being built and expanded to facilitate faster and cheaper connections between industries and markets. And so on. This systemic logic of ever-increasing production and consumption reinforces, at the same time, models of structural oppression, racism and patriarchy.

Industrial consumption, by and large, is now being reinforced by official and corporate initiatives trying to promote a new ‘green’ label for the same economic model. The targets set by companies and governments to reduce pollution, deforestation and biodiversity loss are mostly presented next to economic packages endorsing economic growth, free trade and globalized capitalism. And what does this mean? Basically, more industrial consumption and production. Likewise, the so-called ‘green’ or ‘low carbon’ economy is being promoted alongside market-based policies that pretend to offset the pollution and destruction that is intrinsic to such an economic model. In a nutshell, the so-called ‘transition’ aims to maintain and allow the same economic model that is actually driving the crisis to continue uninterrupted.

Deep-Sea Mining for Metals: Treading Carefully on the Path Toward Renewables

By Katherine Wilkin - Public Employees for Environmental Responsibility, June 8, 2021

As the push for renewable energy sources continues as a means to combat climate change, the demand for metals and minerals that make up critical components of clean energy technology will be on the rise. While some of these minerals can be obtained via deep-sea mining, the environmental impacts of such efforts are not well understood. In moving to a clean energy economy, governments and international non-governmental organizations need to research, understand, and mitigate the negative impacts to the environment and communities that can and will result from activities like deep-sea mining before allowing projects to go forward.

The United States Geological Survey has identified 11 metals and minerals as critical commodities in renewable energy technologies: arsenic, gallium, germanium, indium, tellurium, aluminum, cobalt, graphite, lithium, manganese, and rare earth elements. Silver, copper, selenium, silica, nickel, and cadmium are also used in solar panels, wind turbines, and batteries. Several of these critical metals and elements can be obtained via deep-sea mining from three different types of deposits: (i) cobalt-rich crust that contains manganese, iron, cobalt, copper, nickel and platinum; (ii) polymetallic nodules which are rich in manganese, nickel, copper, cobalt, molybdenum and rare earth elements; and (iii) sea-floor massive sulphides which contain copper, gold, zinc, lead, barium and silver.

Whether deep-sea mining is necessary to acquire enough minerals to fuel the renewable energy shift remains an unanswered question. In a May 2021 report on the need for minerals to power energy transition technologies, the International Energy Agency predicted that by 2040, total mineral demand for clean energy will be four times current demand. Electric vehicles and battery storage technology account for about half of this predicted growth in mineral demand. The Institute for Sustainable Futures at the University of Technology Sydney indicated in 2016 that this increased demand for materials can be satisfied without utilizing deep-sea mining even under a target of 100% renewable energy use by 2050. Further, Carbon Brief reported in 2018 that reserves of lithium and cobalt are likely to be sufficient to meet demand, but there are outstanding concerns of supply chain bottleneck causing delays. This is supported by the IEA report, which indicated that problems in supply of minerals is more likely to be a matter of quality rather than quantity. However, a 2018 study supported by the Dutch Ministry of Infrastructure found that the current supply of critical metals is not enough to transition to a fully-renewable energy system in the Netherlands. Additionally, a 2019 projection of demand for cobalt, lithium, and silver looking as far as 2050 found that “reserves” of these materials—a portion of total available resources that can be extracted economically—will not be sufficient to meet demand for cobalt, and demand for lithium can only be met in a “potential recycling scenario” with improved recycling rates over what is being conducted at present.

With the growing demand for metals and materials for use in renewable energy technologies, concerns arise about the environmental impacts and environmental justice implications of mining on land. For example, cobalt mines in the Democratic Republic of Congo have been the site of human rights violations, child labor, and severe environmental pollution. For that reason, deep-sea mining of these materials may present an option with fewer direct human impacts and environmental justice concerns.

Green Energy, Green Mining, Green New Deal?

Recharge Responsibly: The Environmental and Social Footprint of Mining Cobalt, Lithium, and Nickel for Electric Vehicle Batteries

By Benjamin Hitchcock Auciello, et. al. - Earthworks, March 31, 2021

It is critical that the clean energy economy not repeat the mistakes of the dirty fossil fuel economy that it is seeking to replace. The pivot from internal combustion engines towards electric vehicles provides an unprecedented opportunity to develop a shared commitment to responsible mineral sourcing. We can accelerate the renewable energy transition and drive improvements in the social and environmental performance of the mining industry by reducing overall demand for new minerals, increasing mineral recycling and reuse, and ensuring that mining only takes place if it meets high environmental, human rights and social standards.

This report is designed to inform downstream battery metal users of key environmental, social, and governance issues associated with the extraction and processing of the three battery metals of principal concern for the development of electric vehicles and low-carbon energy infrastructure—lithium, cobalt and nickel—and to offer guidance on responsible minerals sourcing practices. This report reflects and summarizes some of the key concerns of communities impacted by current and proposed mineral extraction in hotspots around the world: Argentina, Chile and the United States for lithium, Papua New Guinea, Indonesia and Russia for nickel, and the Democratic Republic of Congo for cobalt.

Read the text (PDF).

A Material Transition: Exploring supply and demand solutions for renewable energy minerals

By Andy Whitmore - War on Want, March 2021

There is an urgent need to deal with the potential widespread destruction and human rights abuses that could be unleashed by the extraction of transition minerals: the materials needed at high volumes for the production of renewable energy technologies. Although it is crucial to tackle the climate crisis, and rapidly transition away from fossil fuels, this transition cannot be achieved by expanding our reliance on other materials. The voices arguing for ‘digging our way out of the climate crisis’, particularly those that make up the global mining industry, are powerful but self-serving and must be rejected. We need carefully planned, lowcarbon and non-resource-intensive solutions for people and planet.

Academics, communities and organisations have labelled this new mining frontier, ‘green extractivism’: the idea that human rights and ecosystems can be sacrificed to mining in the name of “solving” climate change, while at the same time mining companies profit from an unjust, arbitrary and volatile transition. There are multiple environmental, social, governance and human rights concerns associated with this expansion, and threats to communities on the frontlines of conflicts arising from mining for transition minerals are set to increase in the future. However, these threats are happening now. From the deserts of Argentina to the forests of West Papua, impacted communities are resisting the rise of ‘green extractivism’ everywhere it is occurring. They embody the many ways we need to transform our energy-intense societies to ones based on democratic and fair access to the essential elements for a dignified life. We must act in solidarity with impacted communities across the globe.

This report includes in-depth studies written by frontline organisations in Indonesia and Philippines directly resisting nickel mining in both countries respectively. These exclusive case studies highlight the threats, potential impacts and worrying trends associated with nickel mining and illustrate, in detail, the landscape for mining expansion in the region.

Read the text (PDF).

Taking the High Road: Strategies for a Fair EV Future

By staff - UAW Research Department, January 2020

The American automotive industry is constantly evolving and, throughout the union’s history, the United Auto Workers (UAW) has fought to ensure industry changes result in quality jobs that benefit workers and the economy.

The auto industry is facing a new shift in technology with the proliferation of electric vehicles (EVs). This shift is an opportunity to re-invest in U.S. manufacturing. But this opportunity will be lost if EVs or their components are imported or made by low-road suppliers who underpay workers. In order to preserve American jobs and work standards, what is needed is a proactive industrial policy that creates high-quality manufacturing jobs making EVs and their components.

Read the text (PDF).

A Just(ice) Transition is a Post-Extractive Transition: Centering the Extractive Frontier in Climate Justice

By Benjamin Hitchcock Auciello - War on Want and London Mining Network, September 2019

While the global majority disproportionately suffer the impacts of the climate crisis and the extractivist model, theGlobal North’s legacy of colonialism, the excess of the world’s wealthiest, and the power of large corporations are responsible for these interrelated crises.

The climate change mitigation commitments thus far made by countries in the Global North are wholly insufficient; not only in terms of emissions reductions, but in their failure to address the root causes of the crisis – systemic and intersecting inequalities and injustices. This failure to take inequality and injustice seriously can be seen in even the most ambitious models of climate mitigation.

This report sets out to explore the social and ecological implications of those models.

Read the report (PDF).

Responsible Minerals Sourcing for Renewable Energy

By Elsa Dominish, Sven Teske, and Nick Florin - Institute for Sustainable Futures, 2019

The transition to a 100% renewable energy system is urgently needed to meet the goals of the Paris Climate Agreement and increase the chance of keeping global temperature rise below 1.5 degrees. Renewable energy technologies are now the most cost competitive technologies for new installations – and recent investment in new renewable energy infrastructure globally has been double that of new energy investment in fossil fuels and nuclear.

Renewable energy technologies, electric vehicles and battery storage require high volumes of environmentally sensitive materials. The supply chains for these materials and technologies need to be appropriately managed, to avoid creating new adverse social and environmental impacts along the supply chain.

This report presents the findings of an assessment of the projected mineral demand for fourteen metals used in renewable energy and storage technologies, the potential to reduce demand through efficiency and recycling, and the associated supply risks and impacts. Solar photovoltaic (PV) and wind power have been chosen for this assessment because these two technologies make up the majority of new global renewable electricity installations. Batteries have been assessed because of their importance for use in electric vehicles (EVs) and energy storage systems.

This research aims to identify the main ‘hotspots’ or areas of concern in the supply chain, including technologies, metals and locations, where opportunities to reduce demand and influence responsible sourcing initiatives will be most needed.

Read the report (PDF).

Green Conflict Minerals: The fuels of conflict in the transition to a low-carbon economy

By Clare Church and Alec Crawford - International Institute for Sustainable Development, August 2018

The mining sector will play a key role in the transition toward a low-carbon future.

The technologies required to facilitate this shift, including wind turbines, solar panels and improved energy storage, all require significant mineral and metal inputs and, absent any dramatic technological advances or an increase in the use of recycled materials, these inputs will come from the mining sector. How they are sourced will determine whether this transition supports peaceful, sustainable development in the countries where strategic reserves are found or reinforces weak governance and exacerbates local tensions and grievances.

Through extensive desk-based research, a mapping analysis, stakeholder consultations, case studies and an examination of existing mineral supply chain governance mechanisms, this report seeks to understand how the transition to a low-carbon economy—and the minerals and metals required to make that shift—could affect fragility, conflict and violence dynamics in mineral-rich states.

For the minerals required to make the transition to a low-carbon economy, there are real risks of grievances, tensions and conflicts emerging or continuing around their extraction. In order to meet global goals around sustainable development and climate change mitigation, while contributing to lasting peace, the supply chains of these strategic minerals must be governed in a way that is responsible, accountable and transparent.

Read the report (Link).

Pages

The Fine Print I:

Disclaimer: The views expressed on this site are not the official position of the IWW (or even the IWW’s EUC) unless otherwise indicated and do not necessarily represent the views of anyone but the author’s, nor should it be assumed that any of these authors automatically support the IWW or endorse any of its positions.

Further: the inclusion of a link on our site (other than the link to the main IWW site) does not imply endorsement by or an alliance with the IWW. These sites have been chosen by our members due to their perceived relevance to the IWW EUC and are included here for informational purposes only. If you have any suggestions or comments on any of the links included (or not included) above, please contact us.

The Fine Print II:

Fair Use Notice: The material on this site is provided for educational and informational purposes. It may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. It is being made available in an effort to advance the understanding of scientific, environmental, economic, social justice and human rights issues etc.

It is believed that this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have an interest in using the included information for research and educational purposes. If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. The information on this site does not constitute legal or technical advice.