You are here

rare earths

Green Energy, Green Mining, Green New Deal?

Mineral constraints for transition overstated by IEA

By Kingsmill Bond - Carbon Trackers, May 10, 2021

The IEA’s latest piece on minerals critical to the energy transition gives a rather pessimistic spin to what was some very positive data. Looked at from a wider perspective, the note provides another useful source of analytical support for the energy transition.

The IEA looked into the amount of minerals needed to fuel the energy transition, and pretty quickly worked out ‘there is no shortage of resources’. The world has plenty of lithium, nickel, rare earth metals and so on. This is what the United States Geological Survey (USGS) has been saying for a while, and fits with the work done by the Energy Transitions Commission on mineral availability.

The IEA notes for example that we have 170 times as much lithium reserves as annual demand and that our lithium reserves have increased by 42% over the last eight years as higher prices and the prospect of rising demand have drawn out new investment. Under the IEA’s 1.5 degrees scenario, we will need about twice the amount of critical minerals by 2040 (six times as much for the clean energy industry, but that is only part of global demand), and the IEA put forward a series of sensible suggestions (increase recycling, invest in new supply and so on) to ensure that we get it.

However, their take then turns gloomier as we are warned about how hard this is going to be. Impressive charts show that the average electric vehicle uses 210kg of critical minerals compared to only 35kg for an ICE car and that a MW of solar generation capacity needs 6.5 tonnes of critical minerals compared to a coal plant which needs only 3 tonnes. We are then encouraged to think about all the ESG issues and environmental issues associated with the surge in mineral usage and to worry about supplier concentration, water usage, pollution and depletion.

Stand back a moment however, and you can see immediately that the IEA are very selective in their presentation of the data. They look only at the stocks (the assets you need to build the generator or car) not the flows (the energy you need to run them). But the flows of energy are 2-3 orders of magnitude larger than the stocks, and this means that many of their conclusions are more useful for fossil fuel advocates than for policymakers.

Calls for sustainable and responsible mining for the clean energy transition

By Elizabeth Perry - Work and Climate Change Report, May 6, 2021

An important Special Report by the International Energy Association was released in May: The Role of Critical Minerals in Clean Energy Transitions. Reflecting a mainstream view of the importance of the raw materials for clean technologies such as electric vehicles and energy storage, the IEA provides “ a wealth of detail on mineral demand prospects under different technology and policy assumptions” , and discusses the various countries which offer supply – including Canada. The main discussion is of policies regarding supply chains, especially concerning responsible and sustainable mining, concluding with six key recommendations, including co-ordination of the many international frameworks and initiatives in the area. The report briefly recognizes the Mining Association of Canada’s Towards Sustainable Mining (TSM) protocols as internationally significant, and as one of the first to require on-site verification of its standards. The Towards Sustainable Mining (TSM) initiative was established in 2004, requiring member companies to “demonstrate leadership by reporting and independently verifying their performance in key environmental and social areas such as aboriginal and community engagement, biodiversity conservation, climate change, tailings management.”

On May 5, the Mining Association of Canada updated one of its TSM protocols with the release a new Climate Change Protocol, a major update to its 2013 Energy Use and GHG Emissions Management Protocol. It is designed “to minimize the mining sector’s carbon footprint, while enhancing climate change disclosure and strengthening the sector’s ability to adapt to climate change.” The Protocol is accompanied by a new Guide on Climate Change Adaptation for the Mining Sector, intended for mine owners in Canada, but with global application. The Guide includes case studies of such mines as the Glencore Nickel mine in Sudbury, the notorious Giant Mine in the Northwest Territories, and the Suncor Millennium tailings pond remediation at its oil sands mine in Alberta. The membership of MAC is a who’s who of Canadian mining and oil sands companies / – including well-known companies such as ArcelorMittal, Barrick Gold, Glencore, Kinross, Rio Tinto, Suncor, and Syncrude. Other documentation, including other Frameworks and progress reports, are compiled at a dedicated Climate Change Initiatives and Innovations in the Mining Industry website.

The demand for lithium, cobalt, nickel, and the other rare earth minerals needed for technological innovation has been embraced, not only by the mining industry, but in policy discussions – recently, by Clean Energy Canada in its March 2021 report, The Next Frontier. The federal ministry of Natural Resources Canada is also supportive, maintaining a Green Mining Innovation Initiative through CanmetMINING , and the government joined the U.S.-led Energy Resource Governance Initiative (ERGI) in 2019 to promote “secure and resilient supply chains for critical energy minerals.”

Alternative points of view have been pointing out the dangers inherent in the new “gold rush” mentality, since at least 2016 when Amnesty International released its 2016 expose of the use of child labour in the cobalt mines of the Democratic Republic of Congo. Most recently, in February 2021, Amnesty released Powering Change: Principles for Businesses and Governments in the Battery Value Chain, which sets out specific principles that governments and businesses should follow to avoid human rights abuses and environmental harm. Other examples: MiningWatch Canada has posted their April 2021 webinar Green Energy, Green Mining, Green New Deal?, which states: “The mining sector is working hard to take advantage of the climate crisis, painting mining as “green” because it supplies materials needed to support the “green” energy transition. But unless demand for both energy and materials are curtailed, environmental destruction and social conflicts will also continue to grow.” MiningWatch Canada published Turning Down the Heat: Can We Mine Our Way Out of the Climate Crisis? in 2020, reporting on a 2019 international conference which focused on the experience of frontline communities. Internationally, the Business & Human Rights Resource Centre maintains a Transition Minerals tracker, with ongoing data and reports concerning human and labour rights in the mining of “transition minerals”, and also compiles links to recent reports and articles. Two recent reports in 2021: Recharge Responsibly: The Environmental and Social Footprint of Mining Cobalt, Lithium, and Nickel for Electric Vehicle Batteries (March 2021, Earthworks) and A Material Transition: Exploring supply and demand solutions for renewable energy minerals from the U.K. organization War on Want.

Texas: grids, blackouts, and green new deals

By Jonathan Neale - The Ecologist, February 17, 2021

The failure of the electricity grid in Texas, USA, and the rolling blackouts in the Midwest, are one more consequence of climate breakdown.

The root problem is that the Arctic is growing warmer. As it does so, paradoxically, there is less of a barrier preventing very cold weather in the far north from moving south. This extremely cold weather then blankets cities and downs where people live. 

Download Fight the Fire for free now.

The electricity grid in Texas simply cannot supply enough power for all the extra demands on heating. This is a problem what will grow much worse, and not just in Texas.

Complexity

But Fox News and the Governor of Texas are blaming the failure of the grid on the Green New Deal and renewable energy. That’s silly.

There is no Green New Deal in Texas. There are some wind turbines, that have apparently frozen. But the wind turbines in Canada and Antarctica have not frozen.

This is a problem caused by fossil fuels and privatized energy, not wind trubines.

But environmentalists have to be careful here, and we have to be up to speed on the full complexity of what a Green New Deal will mean for electricity grids.

That’s why The Ecologist is posting here the chapter on supergrids from my new book, Fight the Fire: Green New Deals and Global Climate Jobs.

Power

In what follows, I explain the difficulties in integrating 100 percent renewable energy into the grid, and how it can be done. I also show why that will be impossible if renewable energy and electricity supply are owned by private corporations.

The chapter is about supergrids around the world, but many of the examples come from the United States.

A rewired world does not mean that all energy will come from renewables. But it does mean that most energy will come from electricity, and all that electricity will come from renewables.

That will not be an easy thing to construct. We will need new national and international supergrids to integrate all these new kinds of power into new electrical supply systems. These will be qualitatively new undertakings.

The challenge of mixing together power from renewable energy is different in kind from mixing together energy from fossil fuels – and far more complex.

Lithium, Batteries and Climate Change: The transition to green energy does not have to be powered by destructive and poisonous mineral extraction

By Jonathan Neale - Climate and Capitalism, February 11, 2021

I have spent the last year working on a book called Fight the Fire: Green New Deals and Global Climate Jobs. Most of it is about both the politics and the engineering of any possible transition that can avert catastrophic climate breakdown. One thing I had to think about long and hard was lithium and car batteries.

I often hear people say that we can’t cover the world with electric vehicles, because there simply is not enough lithium for batteries. In any case, they add, lithium production is toxic, and the only supplies are in the Global South. Moreover, so the story goes, there are not enough rare earth metals for wind turbines and all the other hardware we will need for renewable energy.

People often smile after they say those things, which is hard for me to understand, because it means eight billion people will go to hell.

So I went and found out about lithium batteries and the uses of rare earth. What I found out is that the transition will be possible, but neither the politics nor the engineering is simple. This article explains why. I start by describing the situation simply, and then add in some of the complexity.

Lithium is a metal used in almost all electric vehicle batteries today. About half of global production of lithium currently goes to electric vehicles. And in future we will need to increase the production of electric vehicles from hundreds or thousands to hundreds of millions. That will require vast amounts of lithium.

There are three ways to mine lithium. It can be extracted from rock. It can be extracted from the brine that is left over when sea water passes through a desalination plant. Or it can be extracted from those brine deposits which are particularly rich in lithium. These brine deposits are the common way of mining lithium currently, because it is by far the cheapest. Most of the known deposits of lithium rich brine are in the arid highlands where Bolivia, Chile and Argentina come together.

Lithium mining is well established in Chile and Argentina. In both countries the local indigenous people have organized against the mining, but so far been unable to stop it. The mining is toxic, because large amounts of acid are used in the processing. But the mining also uses large amounts of water in places that already has little enough moisture. The result is that ancestral homelands become unlivable.

Bolivia may have even richer deposits of lithium than Argentina and Chile, but mining has not begun there. The Bolivian government had been led by the indigenous socialist Evo Morales from 2006 to 2019. Morales had been propelled to power by a mass movement committed to taking back control of Bolivia’s water, gas and oil resources from multinational corporations. Morales was unable to nationalize the corporations, but he did insist on the government getting a much larger share of the oil and gas revenue.[1]

His government planned to go even further with lithium. Morales wanted to mine the lithium in Bolivia, but he wanted to build factories alongside the mines to make batteries. In a world increasingly hungry for batteries, that could have turned Bolivia into an industrial nation, not just a place to exploit resources.

The Morales government, however, was unable to raise the necessary investment funds. Global capital, Tesla, the big banks and the World Bank had no intention of supporting such a project. And if they had, they would not have done so in conjunction with a socialist like Morales. Then, in 2019, a coup led by Bolivian capitalists, and supported by the United States, removed Morales. Widespread popular unrest forced a new election in October. Morales’ party, the Movement for Socialism won, though Morales himself was out of the running. It is unclear what will happen to the lithium.

That’s one level of complexity. The local indigenous people did not want the lithium mined. The socialist government did not want extractavism, but they did want industrial development.

Those are not the only choices.

For one thing, there are other, more expensive ways of mining lithium. It can be mined from hard rock in China or the United States. More important, batteries do not have to be made out of lithium. Cars had used batteries for almost a century before Sony developed a commercial lithium-ion battery in 1991. Engineers in many universities are experimenting with a range of other materials for building batteries. But even without looking to the future, it would be possible to build batteries in the ways they used to be built. Indeed, in January 2020, the US Geological Service listed the metals that could be substituted for lithium in battery anodes as calcium, magnesium, mercury and zinc.[2]

The reason all manufacturers currently use lithium is that it provides a lighter battery that lasts longer. That gives the car greater range without recharging, and it make possible a much lighter car. In other words, lithium batteries are cheaper.

How “clean” are clean energy and electric vehicles?

By Elizabeth Perry - Work and Climate Change Report, January 19, 2021

Several articles and reports published recently have re-visited the question: how “clean” is “clean energy”? Here is a selection, beginning in October 2020 with a multi-part series titled Recycling Clean Energy Technologies , from the Union of Concerned Scientists. It includes: “Wind Turbine blades don’t have to end up in landfill”; “Cracking the code on recycling energy storage batteries“; and “Solar Panel Recycling: Let’s Make It Happen” .

The glaring problem with Canada’s solar sector and how to fix it” (National Observer, Nov. 2020) states that “While solar is heralded as a clean, green source of renewable energy, this is only true if the panels are manufactured sustainably and can be recycled and kept out of landfills.” Yet right now, Canada has no capacity to recycle the 350 tonnes of solar pv waste produced in 2016 alone, let alone the 650,000 tonnes Canada is expected to produce by 2050. The author points the finger of responsibility at Canadian provinces and territories, which are responsible for waste management and extended producer responsibility (EPR) regulations. A description of solar recycling and waste management systems in Europe and the U.S. points to better practices.

No ‘green halo’ for renewables: First Solar, Veolia, others tackle wind and solar environmental impacts” appeared in Utility Drive (Dec. 14) as a “long read” discussion of progress to uphold environmental and health and safety standards in both the production and disposal of solar panels and wind turbine blades. The article points to examples of industry standards and third-party certification of consumer goods, such as The Green Electronics Council (GEC) and NSF International. The article also quotes experts such as University of California professor Dustin Mulvaney, author of Solar Power: Innovation, Sustainability, and Environmental Justice (2019) and numerous other articles which have tracked the environmental impact, and labour standards, of the solar energy industry.

Regarding the recycling of wind turbine blades: A press release on December 8 2020 describes a new agreement between GE Renewable Energy and Veolia, whereby Veolia will recycle blades removed from its U.S.-based onshore wind turbines by shredding them at a processing facility in Missouri, so that they can be used as a replacement for coal, sand and clay in cement manufacturing. A broader article appeared in Grist, “Today’s wind turbine blades could become tomorrow’s bridges” (Jan. 8 2021) which notes the GE- Veoli initiative and describes other emerging and creative ways to deal with blade waste, such as the Re-Wind project. Re-Wind is a partnership involving universities in the U.S., Ireland, and Northern Ireland who are engineering ways to repurpose the blades for electrical transmission towers, bridges, and more. The article also quotes a senior wind technology engineer at the National Renewable Energy Laboratory in the U.S. who is experimenting with production materials to find more recyclable materials from which to build wind turbine blades in the first place. He states: “Today, recyclability is something that is near the top of the list of concerns” for wind energy companies and blade manufacturers alike …. All of these companies are saying, ‘We need to change what we’re doing, number one because it’s the right thing to do, number two because regulations might be coming down the road. Number three, because we’re a green industry and we want to remain a green industry.’”

These are concerns also top of mind regarding the electric vehicle industry, where both production and recycling of batteries can be detrimental to the planet. The Battery Paradox: How the electric vehicle boom is draining communities and the planet is a December 2020 report by the Dutch Centre for Research on Multinational Corporations (SOMO). It reviews the social and environmental impacts of the whole battery value chain, (mining, production, and recycling) and the mining of key minerals used in Lithium-ion batteries (lithium, cobalt, nickel, graphite and manganese). The report concludes that standardization of battery cells, modules and packs would increase recycling rates and efficiency, but ultimately, “To relieve the pressure on the planet, …. any energy transition strategy should prioritize reducing demand for batteries and cars… Strategies proposed include ride-sharing, car-sharing and smaller vehicles.”

Solar Panel Recycling: Let’s Make It Happen

By James Gignac - Union of Concerned Scientists, October 30, 2020

This is one of four blogs in a series examining current challenges and opportunities for recycling of clean energy technologies. Please see the introductory post, as well as other entries on wind turbines and energy storage batteries. Special thanks to Jessica Garcia, UCS’s Summer 2020 Midwest Clean Energy Policy Fellow, for research support and co-authoring these posts.

Growth of solar panels and their lifespans

Solar energy is converted into electricity primarily with photovoltaic (PV) panels (there is another technology, called concentrating solar power, or CSP, but it is less commonly used and not addressed here). PV panels are comprised of individuals cells linked together, forming various shapes and sizes based on the needs of the system. The panels themselves are made with semiconductor materials—generally silicon, but sometimes various rare metals—and generally covered in glass.

The cost of PV panels has declined dramatically in recent years while their efficiency has gone up. These trends are continuing, leading to rapid growth of the solar industry globally. Solar panels on average last 25-30 years (and maybe even longer); thus, solar installations occurring today can be expected to remain productive until the middle of this century.

The reliability and longevity of new panels means that the volume requiring recycling or disposal is currently low, except for very early generations of PV panels and small numbers that may get broken during the installation process or damaged in storms.

However, options for recycling and disposal need to be addressed as PV production continues to ramp up. And while the larger recycling need may not come for another decade, infrastructure and policy should be put in place now to accommodate future needs.

Cracking the Code on Recycling Energy Storage Batteries

By James Gignac - Union of Concerned Scientists, October 30, 2020

This is one of four blogs in a series examining current challenges and opportunities for recycling of clean energy technologies. Please see the introductory post, as well as other entries on solar panels and wind turbines. Special thanks to Jessica Garcia, UCS’s Summer 2020 Midwest Clean Energy Policy Fellow, for research support and co-authoring these posts.

Lithium-ion batteries dominate the energy storage scene

Lithium-ion (Li-ion) batteries might be known to everyday consumers as the rechargeable batteries which power our cellphones, cameras, and even toothbrushes. Apart from storing energy for small devices, Li-ion batteries are now being used at a much larger scale to store energy for electric vehicles (EVs) and as storage for renewable energy systems like wind and especially solar.

Bloomberg New Energy Finance reports that prices for battery packs used in electric vehicles and energy storage systems have fallen 87% from 2010-2019, much faster than expected. As the prices have fallen, battery usage has risen.

So have the conversations on what can and should be done with Li-ion batteries when they reach the end-of-use stage. Here we will focus on recycling of lithium-ion batteries from energy storage systems, but for more information on increasing possibilities for second-life uses of EV batteries, see our former colleague Hanjiro Ambrose’s blog and podcast episode.

As a key energy storage technology, batteries are important for incorporating higher amounts of wind and solar power on the grid.

Wind Turbine Blades Don’t Have To End Up In Landfills

By James Gignac - Union of Concerned Scientists, October 30, 2020

This is one of four blogs in a series examining current challenges and opportunities for recycling of clean energy technologies. Please see the introductory post, as well as other entries on solar panels and energy storage batteries. Special thanks to Jessica Garcia, UCS’s Summer 2020 Midwest Clean Energy Policy Fellow, for research support and co-authoring these posts.

Wind turbines have increased in size and quantity to meet clean energy capacity demands

Modern wind power converts the kinetic (movement) energy from wind into mechanical energy. This happens through the turning of large fiberglass blades, which then spin a generator to produce electricity. Wind turbines, as they are known, can be located onshore or offshore.

Wind power is projected to continue growing across the US by 2050. The latest Wind Technologies Market Report prepared by Lawrence Berkeley National Laboratory found that wind energy prices are at all-time lows, and for 2019, 7.3 percent of utility-scale electricity generation in the US came from wind. In this blog post, we will examine land-based wind turbines and the recycling opportunities that exist but are not yet widely implemented for the turbine blades.

Source: Berkeley Lab Electric Markets & Policy (https://emp.lbl.gov/wind-energy-growth)

Toward A Green New Future

By Thea Riofrancos and Daniel Aldana Cohen - Socialism 2020, July 26, 2020

Join Thea Riofrancos and Daniel Aldana Cohen for a discussion of the Green New Deal and the future we can build out of our crisis-ridden present. This event is part of the Socialism 2020 Virtual conference. See more at socialismconference.org.

Pages

The Fine Print I:

Disclaimer: The views expressed on this site are not the official position of the IWW (or even the IWW’s EUC) unless otherwise indicated and do not necessarily represent the views of anyone but the author’s, nor should it be assumed that any of these authors automatically support the IWW or endorse any of its positions.

Further: the inclusion of a link on our site (other than the link to the main IWW site) does not imply endorsement by or an alliance with the IWW. These sites have been chosen by our members due to their perceived relevance to the IWW EUC and are included here for informational purposes only. If you have any suggestions or comments on any of the links included (or not included) above, please contact us.

The Fine Print II:

Fair Use Notice: The material on this site is provided for educational and informational purposes. It may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. It is being made available in an effort to advance the understanding of scientific, environmental, economic, social justice and human rights issues etc.

It is believed that this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have an interest in using the included information for research and educational purposes. If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. The information on this site does not constitute legal or technical advice.